

Chemotherapy Induced-Nausea/Vomiting (CINV) in Pediatric Practice

Chalinee Monsereenusorn, MD

Assistant Professor Division of Hematology-Oncology, Department of Pediatrics, Phramongkutklao Hospital and College of Medicine

- Introduction
- Mechanism of CINV
- Causes of CINV
- Consequence of CINV
- Definitions
- Risk factors
- Treatment Guideline

Patient Perceptions of the Most Severe Side Effects of Cancer Chemotherapy

Rank	1983 ¹	1993 ²	1995 ³	1999 ⁴
1.	Vomiting	Nausea	Nausea	Nausea
2.	Nausea	Constantly tired	Loss of hair	Loss of hair
3.	Loss of hair	Loss of hair	Vomiting	Constantly tired
4.	Thought of coming for treatment	Effect on family	Constantly tired	Vomiting
5.	Length of time treatment takes	Vomiting	Having to have an injection	Changes in the way things taste

Adapted from: ¹Coates A et al. *Eur J Cancer Clin Oncol.* 1983;19:203-8. ²Griffin AM et al. *Ann Oncol.* 1996;7:189-95. ³De Boer-Dennert M et al. *Br J Cancer.* 1997;76:1055-61. ⁴Lindley C et al. *Cancer Pract* 1999;7:59-65.

Mechanisms of CINV

- Central mechanism:
 - Chemotherapeutic agent activates the chemoreceptor trigger zone (CTZ).
 - Activated CTZ invokes release of various neurotransmitters, which stimulate vomiting center.

Peripheral mechanism:

- Chemotherapeutic agent causes irritation and damage to gastrointestinal (GI) mucosa, resulting in the release of neurotransmitters.
- Activated receptors send signals to vomiting center via vagal afferents.

Causes of CINV

In addition to emesis induced by chemotherapy, CINV can be caused by:

- Partial or complete bowel obstruction
- Vestibular Dysfunction
- Brain Metastases
- Electrolyte imbalance: hypercalcemia, hyperglycemia, hyponatremia, uremia
- Concomitant drugs, including opiates
- Radiation

PedHemOnc-PMK

- Gastroparesis induced by a tumor or chemotherapy (such as vincristine)
- Psychophysiologic factors, including anxiety as well as anticipatory nausea and vomiting
 Pediatric Cancer & Hematologic Disorder

Consequence of Unresolved CINV

Adverse sequelae of nausea and vomiting in the cancer patient.

- Discontinuation of therapy
- Serious metabolic derangements
- Nutritional depletion and anorexia
- Esophageal tears

Pediatric Cancer & Hematologic Disorder

PedHemOnc-PMK

- Wound dehiscence
- Deterioration of patients' physical, mental status and quality of life
- Degeneration of self-care and functional ability

Nausea urge to vomit
 Vomiting forceful expulsion of gastric contents
 Retching contractions without expulsion

Definitions

- Acute < 24 hours</p>
- Delayed > 24 hours (2-5 days later)
 - May last up to 6 days
 - It commonly occurs with cisplatin, carboplatin, cyclophosphamide and/or anthracyclines.
- Anticipatory nausea and/or vomiting before patients receive their chemotherapy, after a prior negative experience with chemotherapy
- Breakthrough occurs despite prophylactic treatment and/or requires rescue.
- Refractory nausea and emesis during subsequent cycles when antiemetic prophylaxis and/or rescue have failed in earlier cycles

- Treatment factors
 - Agent-specific emetogenic potential
 - Intensity
 - Time to onset
 - Acute vs Delayed
 - Combinations more emetogenic
 - Higher dosages usually more emetogenic
 - Longer infusion duration less emetogenic

"Challenges in multiple-day chemotherapy regimens"

Emeto	netogenic potential: Acute			
High > 90% 	Moderate 30-90% 	Low 10-30%	Mini < 102	mal %

If absence of prophylaxis

Adapted from COG Guidelines on Chemotherapy-induced Nausea and Vomiting in Pediatric Cancer Patients, Dec 2016

Emetogenic potential: Acute

High

- Cisplatin/ carboplatin
- Nitrogen mustard
- MTX \geq I2g/m²
- Dacarbazine
- Actinomycin
- HD Ara-C
- HD CPM/Ifos

Moderate

- Busulfan
- LD CTX
- LD Ara-C
- Antracyclins
- HD MTX
- IT MHA
- Irinotecan

Low

Etoposide

▶ 5-FU

- Mitoxantrone
- Topotecan
- Taxol

Minimal

- Vincristine
- VBL
- L-asp
- LD MTX
- ▶ 6-MP
- Bleomycin
- -nib
- -mab

Delay: Cisplatin HD CTX/Ifos 80% 50-60%

Pediatric Cancer & Hematologic Disorder PedHemOnc-PMK

Adapted from COG Guidelines on Chemotherapy-induced Nausea and Vomiting in Pediatric Cancer Patients, July 2019

Acute Emetogenic Potential of Specific Antineoplastic Given in Combination

- High emetic risk
 - Cyclophosphamide + doxorubicin
 - Cyclophosphamide + etoposide
 - Cytarabine 300 mg/m² + etoposide
 - Doxorubicin + ifosfamide
 - Doxorubicin + methotrexate 5 g/m²
 - Etoposide + ifosfamide
- Acute AND delayed nausea and vomiting

- Patient factors (adult data)
 - Prior chemotherapy
 - Anxiety
 - Female sex
 - Age <50 years</p>
 - No/minimal prior history of alcohol use
 - Prior CINV
 - High pretreatment expectation of severe nausea

- Strongest predictor of delayed nausea and vomiting was the occurrence of acute nausea and vomiting.
- Patients aged ≤ 52 years and women were more likely to have delayed nausea than were those > 52 years and men.
- A high expectation of nausea was a significant predictor of more severe nausea.

	Prophylaxis	Breakthrough treatment
Acute	V	V
Delayed	V	V
Anticipatory	V	V

"Prevention more effective than treatment of breakthrough symptoms!"

- True antiemetics
- Anxiolytics
- Sedatives
- Non-pharmacologic approaches

- Serotonin and 5-HT₃ Receptor Antagonist
- Substance P and Neurokinin1 (NK₁) Receptor Antagonist
- Dopamine receptor antagonist: metoclopramide
- Steroid

Pediatric Cancer & Hematologic Disorder
PedHemOnc-PMK

GENERIC NAME	BRAND NAME	DOSAGE FORMS	
5-HT ₂ RECEPTOR ANTAGONISTS			
Dolasetron	Anzemet [®] (sanofis-aventis,	PO, IV	
Granisetron	Kytril®, Sancuso® (Pro-	PO, IV, transder-	
Ondansetron	Straken Inc.) Zofran® (GlaxoSmithKline)	PO. IV. IM	
Palonosetron	Aloxi® (Elsal Inc.)	PO, IV	
NEUROKININ-1 RECEP	TOR ANTAGONISTS		
Aprepitant	Emend [®] (Merck & Co., Inc.)	PO	
Fosaprepitant	Emend for Injection (Merck & Co., Inc.)	IV	
CORTICOSTEROIDS			
Dexamethasone	Decadron [®] (Merck & Co.,	PO, IV, IM	
Methylprednisolone	Medrol [®] (Pfizer, Inc.)	PO, IV, IM	
CANNABINOIDS			
Dronabinol	Marinol [®] (Solvay Pharma-	PO	
Nabilone	Cesamet [®] (Valent Pharma-	PO	
	ceuticals International)		
DOPAMINE RECEPTOR ANTAGONISTS			
Substituted benzan	nides		
Metoclopramide	Reglan [®] (Baxter Pharma- ceuticals)	PO, IV, IM	
Phenothiazines	controlly,		
Perphenazine	Trilafon® (Schering Corp.)	PO	
Prochiorperazine	Compazine® (GlaxoSmith- Kline)	PO, IV, IM, PR	
Thiethylperazine	Torecan® (Novartis)	PO, IV, IM	
Butyrophenones			
наюрепоо	Pharmaceuticals)	PU, IM	

Hawkins, et al. Clinical Journal of Oncology Nursing, Vol 13. 2009. P54-64.

- Ondansetron:
- Dexamethasone:
- Metoclopramide:

- Lorazepam:
- Alprazolam:
- Aprepitant:

- 0.15 mg/kg/dose q 8 hours (max 8 mg/dose) 0.45 mg/kg/dose single dose (max 24 mg/dose) $10 \text{ mg/m}^2/\text{dose D1}$ then $5 \text{ mg/m}^2/\text{dose IV/PO}$ q 12 hr(Max 20mg/day) 0.5-1 mg/kg IV/PO q 6 hr prn or scheduled (Usual starting max 25-50 mg/dose) Give w/ diphenhydramine 0.5-1 mg/kg/dose IV/PO q6hr PRN or scheduled for dystonia prophylaxis 0.025-0.05 mg/kg/dose q 6 hrs (max 2 mg/dose) 0.5-2 mg qid
- ≥ 20 kg: 125 mg PO on day 1, then 80 mg PO daily x 2 days
 10-20 kg: 80 mg PO on day 1, then 40 mg PO daily x 2 days
 <10 kg: 40 mg PO on day 1, then 20 mg PO daily x 2 days

Emetogenic	Day 1	Day 2-4
High	Ondansetron Dexamethasone Aprepitant (125) ± Lorazepam	Ondansetron Dexamethasone Aprepitant (80)x2 ± Lorazepam
Moderate	Ondansetron Dexamethasone ± Aprepitant (125) ± Lorazepam	Ondansetron or Dexamethasone or ± Aprepitant (80)x2 ± Lorazepam
Low	Dexamethasone or Metoclopramide or Ondansetron ± Lorazepam	As needed
Minimal	-	Metoclopramide

Management of Breakthrough N/V

- Breakthrough:
 - Lorazepam OR
 - Ondansetron OR
 - Dexamethasone OR
 - Metoclopramide
 - If patient has dyspepsia, consider antacid therapy

Management of Anticipatory N/V

- Anticipatory
 - The most effective way to treat is to prevent CINV by using optimal antiemetics during every cycle of therapy.
 - Younger patients may be more susceptible as they generally receive more aggressive therapy and have poorer emesis control than older patients
 - Lorazepam OR
 - Alprazolam
 - Others: behavioral therapy, acupuncture

PedHemOnc-PMK

Adapted from Andrews & Davis. In: Andrews PLR & Sanger GJ (Eds). Emesis in Anti-Cancer Therapy: Mechanisms and Treatment. London: Arnold; 1993:147.

- Chemotherapy-induced nausea/vomiting (CINV) is a common side effect despite antiemetic therapy.
- Health care professionals need to ensure patients are being treated according to current antiemetic guidelines.
- It is always better and easier to PREVENT than to treat nausea/vomiting associated with chemotherapy.
- Optimal antiemetic management with EVERY cycle!
 - If lots of prn last time, add more scheduled this time

children with cancer

for

www.pedhemeoncpmk.com