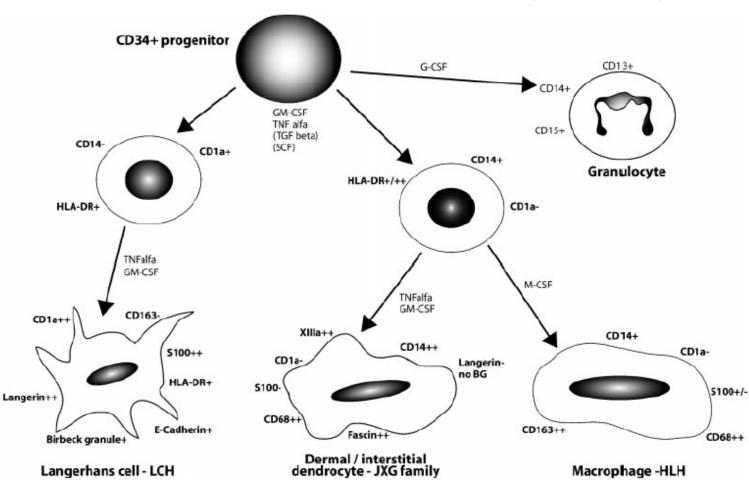


Langerhans Cell Histiocytosis Past, Present and Future

The 54th TSH Annual Meeting: "Hematology: Basics and Beyond" 1-2 May, 2019

Chalinee Monsereenusorn, MD

Assistant Professor Division of Hematology-Oncology, Department of Pediatrics, Phramongkutklao Hospital and College of Medicine



- Introduction
- Biology
- Epidemiology
- Clinical presentations
- Investigations
- Diagnostic histopathology
- Clinical classification
- Prognosis
- Treatment

Pediatric Cancer & Hematologic Disorder

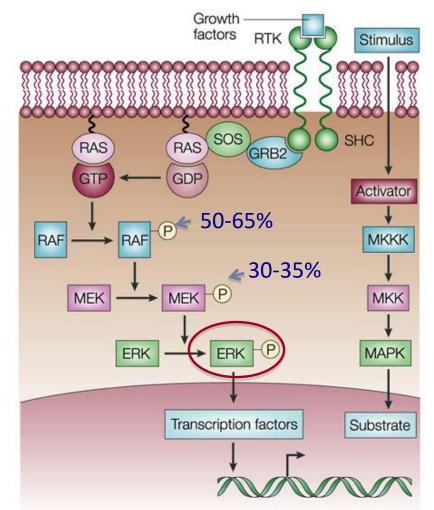
Weitzman et al., Pediatr Blood Cancer 2005; 45: 256-64

Class	Syndrome
I	 Langerhans cell histiocytosis (LCH)
Dendritic/histiocytic disorder	 Non-LCH Erdheim-Chester Disease – primary in adult Juvenile xanthogranuloma (JXG) – occur in children and adult
II	Rosai-Dorfman Disease
Macrophage/monocytoid disorder	 Hemophagocytic lymphohistiocytosis (HLH) Primary HLH – genetic disorder Secondary HLH- infectious associated hemophagocytic syndrome (IAHS)
III	Malignant histiocytosis (histiocytic sarcoma)
Malignant disorder	Monocytic/myelomonocytic leukemias

Adapted from http://www.cancer.gov/cancertopics/pdq/treatment/lchistio/HealthProfessional

- Clonal proliferation of "Langerhans Cells"
- Multiple organs and systems can be involved
- Clinical presentation and outcome very variable

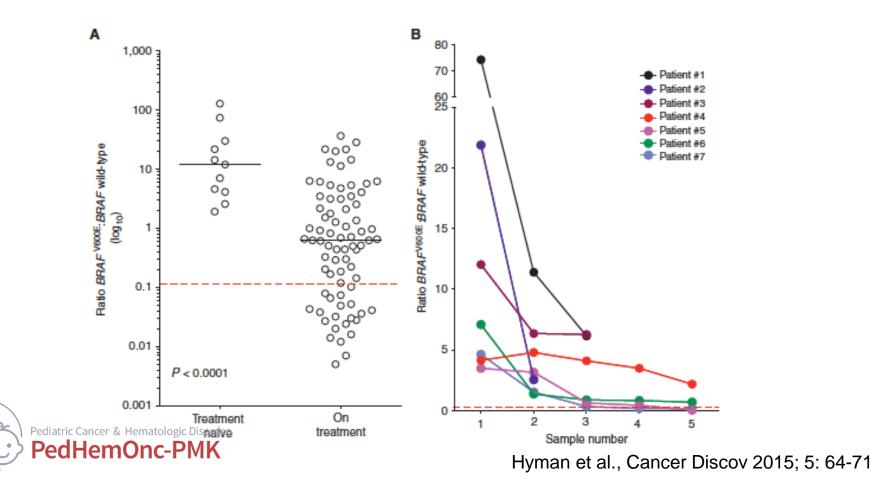
Eosinophilic Granuloma Skin Disease Poliostotic Bone Disease Hand-Schuler-Christian Multi-systemic Disease Letterer-Siwe


- Inflammatory response vs. Oncogenic event ???
- Originate from a myeloid-derived precursor
- Uncontrolled clonal periforation of CD1a+/CD207+ cells
- Activation of the MAPK/ERK signaling pathway
 - 60-70% somatic mutation in BRAF (BRAFV600E)
 - 10-25% Others
 - Mutation in MAP2K1
 - Mutation in ARAF
 - ¾ Unknown

Badalian-Very et al., Annu Rev Pathol 2013; 8: 1-20 Badalian-Very et al., Blood 2010; 116: 1919-23 Chakraborty et al., Blood 2014; 124: 3007-15

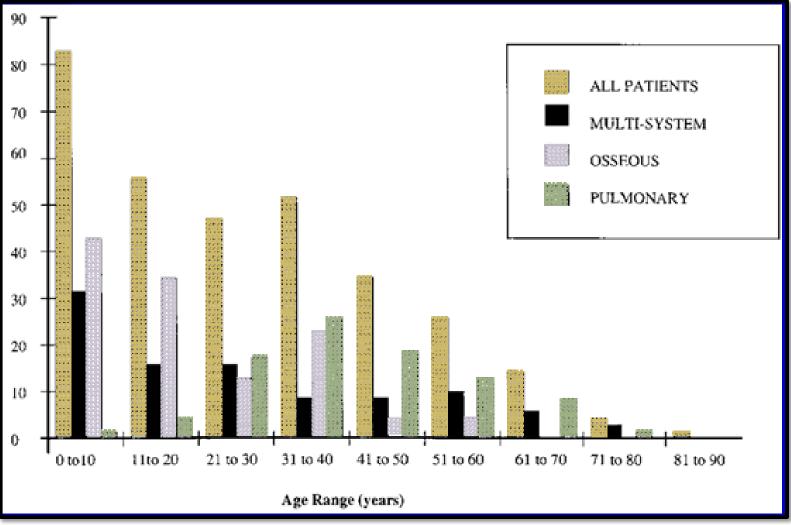
RAS-RAF-MEK-ERK Signaling

Nature Reviews | Cancer


Chin et al, Nat Rev Cancer 2003; 559

Prospective Blinded Study of BRAF^{V600E} Mutation Detection in Cell-Free DNA of Patients with Systemic Histiocytic Disorders

David M. Hyman¹, Eli L. Diamond², Cecile Rose T. Vibat³, Latifa Hassaine³, Jason C. Poole³, Minal Patel⁴, Veronica R. Holley⁵, Goran Cabrilo⁵, Timothy T. Lu³, Maria E. Arcila⁶, Young Rock Chung⁷, Raajit Rampal⁴, Mario E. Lacouture⁸, Neal Rosen⁹, Funda Meric-Bernstam⁵, José Baselga^{1,7}, Apple Razelle Kurzrock¹⁰, Mark G. Erlander³, Filip Janku⁵, and Omar Abdel-Wahab^{4,7}



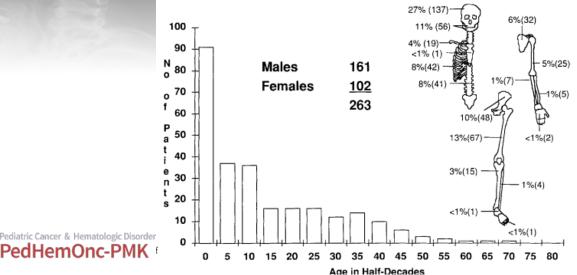
Epidemiology of LCH

- Rare
- 8-9 cases per million/year in children
 - Same in adults
- 1/10th the incidence of childhood leukemia
- Male:Female ratio is 1:1
- Median age presentation is 30 months
- Patients may present from birth to the 9th decade

Pediatric Cancer & Hematologic Disorder

Howarth et al., Cancer 1999; 85: 2278-90

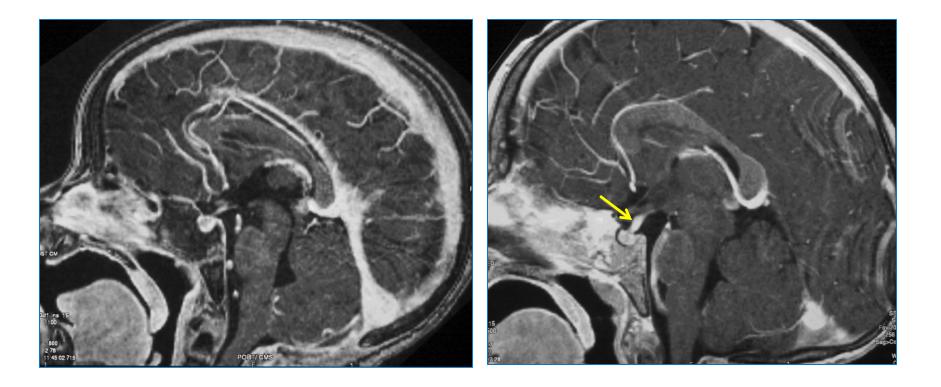
- Population-based studies may be used to describe patterns of incidence
 - Higher incidence in first year, with rapid decline and plateau
 - Significantly higher incidence in Hispanics and lower in Blacks (infants)
 - Higher incidence associated with socioeconomic exclusion (education and crowding)
- Some of these findings may provide clues to causation and deserve further evaluation (epidemiology + genomics)
- Given age distribution, perinatal and early life exposures should be explored



Kilpatrick et al., Cancer 2006

Floating teeth

Parental permission for educational propose only



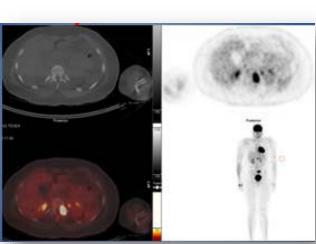
Parental permission for educational propose only

- MCM symptom of CNS involvement
- Before, during, after (median 10-12 months)
- Skull lesions and extraosseous disease
- MRI: absent post pituitary bright signal, thickened infundibulum
- Unreversible
- Other deficits:
 - GH deficiency > ACTH def > alt puberty
 - Precoccious/delayed puberty
- Neurologic Sequelae:
 - Neuro-degenerative disease
 - Intelectual deficits

- Incidence and prevalence unknown
 - "15 LCH vs 274 Sarcoidosis"
- Mainly among whites
- 90-95% adults
- 90-95% smokers
- Reticulonodular pattern

	Brain Skull and craniofa	Neuroendocrine deficits Neurodegeneration acial bones
C	Chest	Lung disease (infants, smokers) Thymus
Æ	Abdomen	Liver Spleen GI tract
S	Skeleton	Bones
S	Skin	Cradle cap, seborrhea
ŀ	lematopoietic sy	vstem pancytopenia, hypersplenism
L	.ymph nodes	

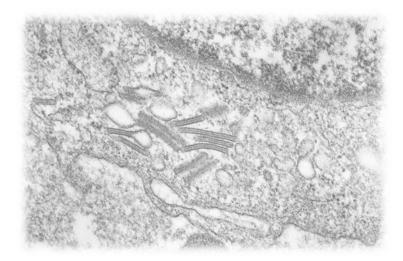
Site	% of cases
	involved
Bone	80
Skin	60
Liver, spleen, LN	33
Bone marrow	30
Lungs	25
Orbit	25
Orodental	20
Otological	20
DI	15
GI tract	<5

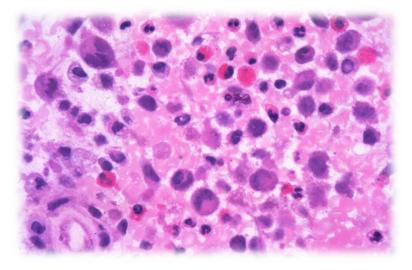


Investigations

- Plain film skull
- Plain x-ray of primary lesion
- Bone survey
- CT/MRI primary lesion
- Abdominal ultrasound
- MRI pituitary
- PET scan : almost always positive in LCH*
- CBC, blood chem

*Agarwal et al., Jpn J Radiol; 2016, 34:267-76





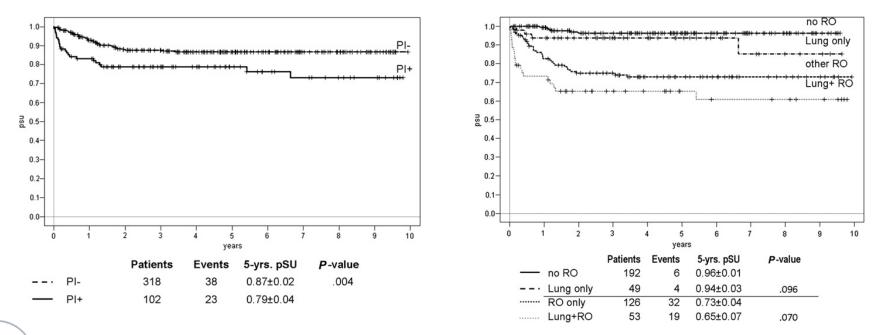
Diagnostic Histopathology

- Uniform regardless of clinical severity:
 - Diagnosis:
 - CD1a, Langerin
 (CD 207), S-100
 - EM: Birbeck granules

- Presumptive diagnosis: LM characteristics compatible
- Designated diagnosis
 - LM <u>plus</u>
 - ► ≥2 supplemental positive stains for
 - Adenosine triphosphatase
 - S-100 protein
 - α-D-Mannosidase
 - Peanut lectin

Definitive diagnosis

- LM plus
- Birbeck granules in the lesional cell by EM and/or
- Positive staining of CD1a antigen and/or CD207 (Langerin) staining on the lesional cell


LCH-III (2001-2008)

Clinical	Involved system	Involved organs
Group		
1	Multisystem	Any "Risk*" organ involvement
	" <u>Risk</u> " patients	
2	Multisystem	≥ 2 organ <u>without</u>
	" <u>Low risk</u> " patients	"Risk*" organ involvement
3	Single system	
	Multifocal or	≥ 2 lesions in <u>one</u> organ or
	• Special site [#]	In special site [#]
-	Single system	
	Unifocal or localized	1 lesion in one organ

*Risk organs consist of <u>Lung, liver, spleen, bone marrow or haematological</u> dysfunction #Special site are *intracranial soft tissue extension* or <u>vertebral lesions with intraspinal</u> <u>soft tissue extension</u>

- In multivariate analysis, pulmonary involvement was not an independent prognostic factor
- Therefore, it was excluded from the definition of risk organ involvement in MS-LCH.

Pediatric Cancer & Hematologic Disorder PedHemOnc-PMK

Clinical Classification of LCH patients

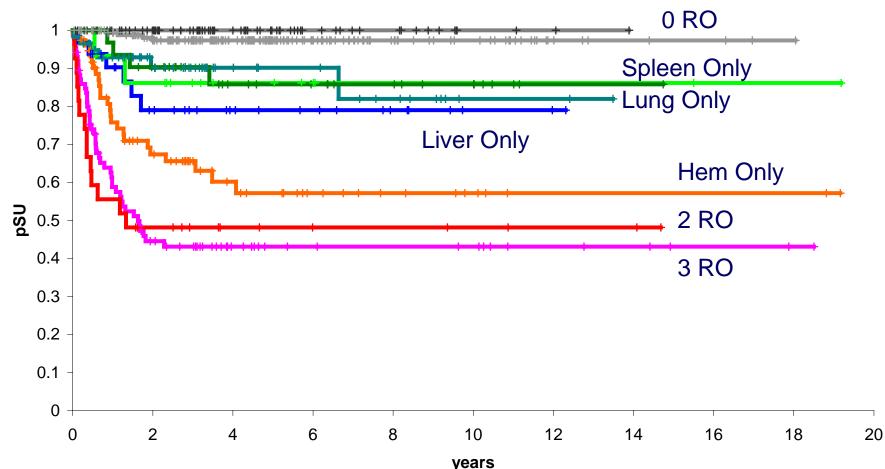
LCH-IV (2011)

Pediatric Cancer & Hematologic Disorder
PedHemOnc-PMK

Clinical	Involved	Involved Organs
Classification	System	
Multisystem LCH	≥ 2	RO+/-
(MS-LCH)		(e.g. hemato, liver, and/or spleen)
(Group 1)		
Single System	1	 Bone UF (single bone) or MF (>1 bone)
LCH	(UF/MF)	• Skin
(SS-LCH)		• LN (excluding draining LN of another LCH lesion)
(Group 2)		• <u>Lungs</u>
		 Special site (eg. Vertebrae, spine)
		• "CNS-risk"
		 Central nervous system (CNS)
		• Other (e.g. thyroid, thymus)

Risk organs involvement definition

Hematopoietic involvement: (+/- BM involvement~CD1a +)


- At least 2 of the following:
- 1. Anemia:
 - Hemoglobin <10 g/dl
 - Infants <9.0 g/dl
- 2. Leukocytopenia: WBC <4,000/μL
- **3. Thrombocytopenia:** platelets <100,000/μL
- Spleen involvement: enlargement >2 cm BCM in the MCL by PE
- ► Liver involvement: ≥ 1 of the following
 - 1. Enlargement >3 cm BCM in the MCL by PE
 - Dysfunction i.e. hypoproteinemia <55 g/L, hypoalbuminemia <25 g/L, not due to other causes
 - 3. Histopathological findings of active disease

Outcome by Risk Organ Involvement

Pediatric Cancer & Hematologic Disorder PedHemOnc-PMK Data from LCH Studies Provided by Vienna Data Center

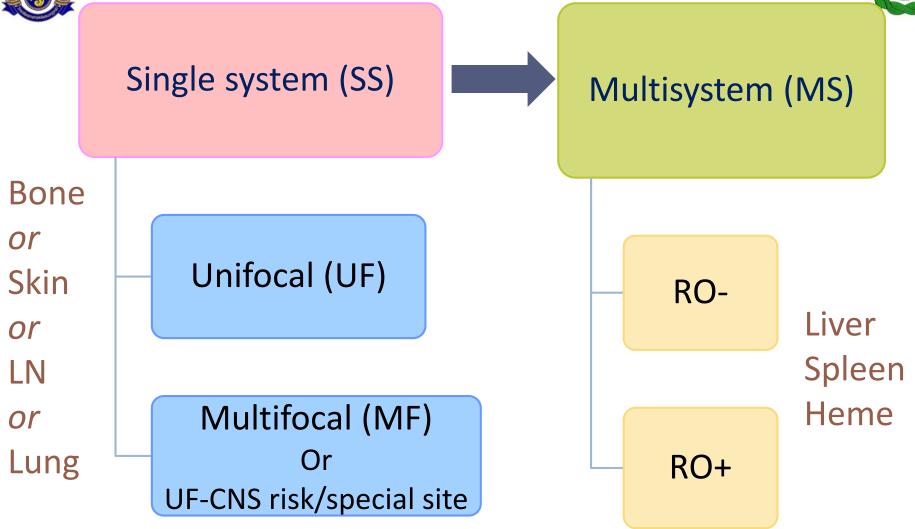

CNS-Risk Lesions

Facial bones or Anterior or Medial Cranial Fossa: Skull base Mastoid Temporal Maxilla Sphenoidal Ethmoidal Cygomatic bone Orbits

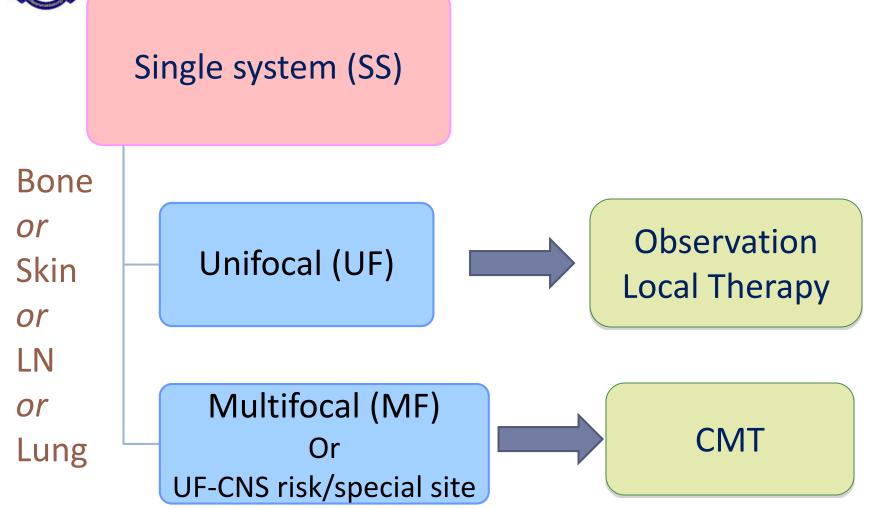
With intracranial extension or <u>could not be excised</u>

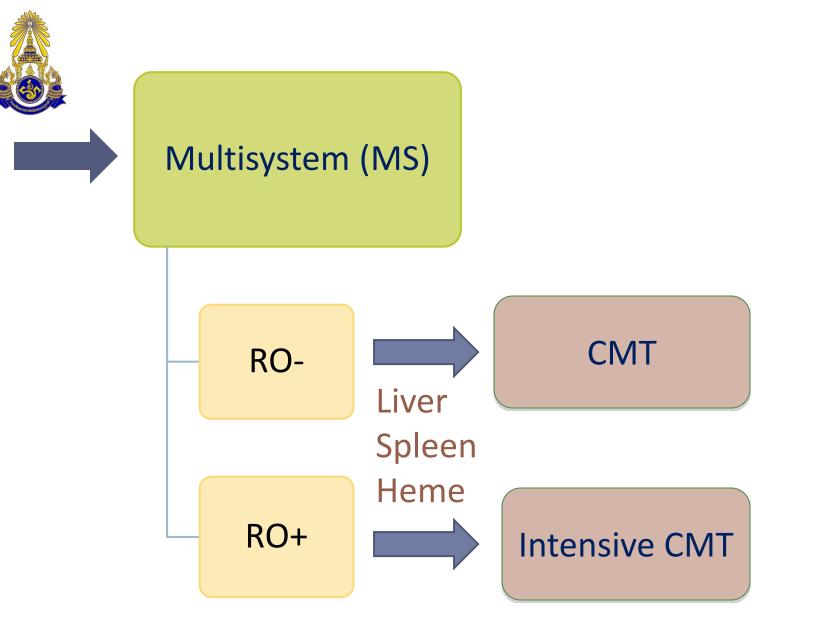
- Rapid response to initial treatment within 6 weeks
- Involvement of "Risk organs"; hematopoietic system, liver, spleen and lungs
- Age at diagnosis: diagnosed before 2 years of age, mortality rate 66% (but not include in "Risk")
- Number of organ involvement : mortality rate is increasing follow by numbers of organ involvement
- Bone involvement associated with favorable prognosis
- Organ dysfunction presented at diagnosis or during the course of disease
- Patients with MFB have excellent prognosis but high tendency for disease reactivation (30-50%) and permanent consequences

Gadner et al., J Pediatr 2001; 138: 728-34 Gadner et al., Blood 2008; 111: 2556-62 Gadner et al., Klin Padiatr 1987; 199: 173-82 Gadner et al., Blood 2013; 121: 5006-14



Treatment





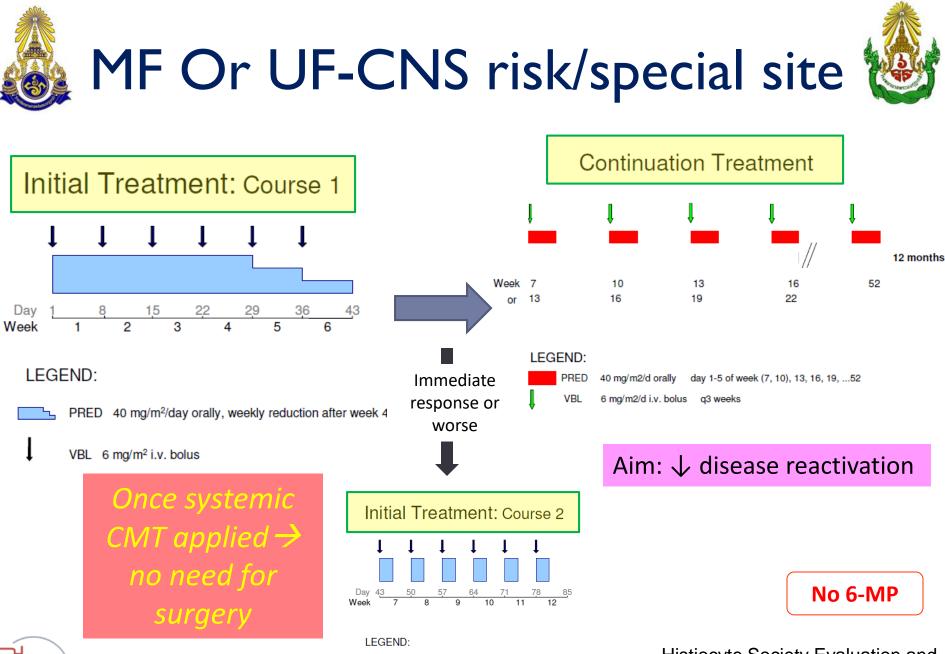
Indications for Systemic Therapy

SS-LCH with

- CSN-risk lesions
- Multifocal bone lesions
- "Special Site" lesions

MS-LCH with/without involvement of risk organs

Unifocal lesion



- Observe
- ~30% of UF bone lesion develop MFB within 2 years
- If remission → relapse UF bone → local control or systemic CMT
- ► Eosinophilic granuloma had PGE overexpression → role for indomethacin
- Local control
 - Biopsy
 - Curettage
 - Excision
 - Intralesional or topical steroid
 - Radiotherapy

Options: bisphosphanate, indomethacin, NSAIDS

PedHemOnc-PMK

T

Pediatric Cancer & Hematologic Disorder PedHemOnc-PMK

PRED 40 mg/m²/day orally, weekly for 3 days i.v. bolus

VBL 6 mg/m² i.v. bolus

Histiocyte Society Evaluation and Treatment Guidelines, April 2009 from www.histiocytesociety.org

MS-LCH History of LCH treatment

LCH-I (1991-1995)

<u>VBL/VP-16</u> + HD-MP x 6 mo

- Same clinical effectiveness
- High incidence of 2nd malignancy and toxicity in VP-16 group
- "Risk" = Heme, lung, liver spleen and age at Dx <2 y</p>
- Survival related to response to treatment at week 6
- ▶ Treatment response at 6th weeks was low compared to historical
 → need treatment intensification
- ▶ Disease reactivation was higher compared to historical → need prolongation of treatment

V

Pediatric Cancer & Hematologic Disorder PedHemOnc-PMK Gadner et al., J Pediatr 2001; 138: 728-34 Minkov et al., Klin Padiatr 2000; 212: 139-144 Minkov et al., Med Pediatr Oncol 2002; 39: 581-5

MS-LCH History of LCH treatment

LCH-II (1996-2001)

Induction: VBL+PRED+VP-16 x 6 wk

Continuation: PRED+VBL+6-MP<u>±VP-16</u> x 6 mo

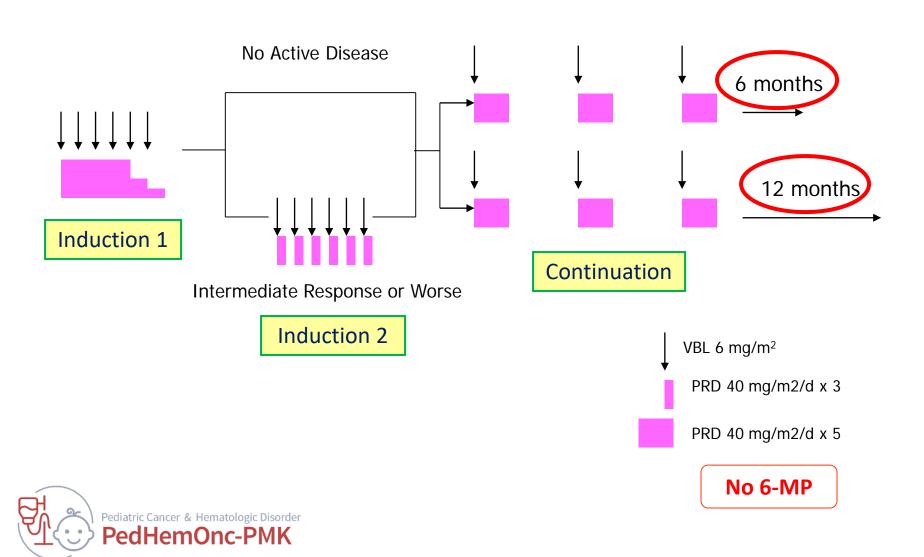
- Intensive Rx upfront (3 drugs) esp. VP-16 improve outcome???
- No significant improvement of overall response, survival and disease reactivation
- RO+ had significant improvement
- Age at Dx < 2y was not independent RF</p>

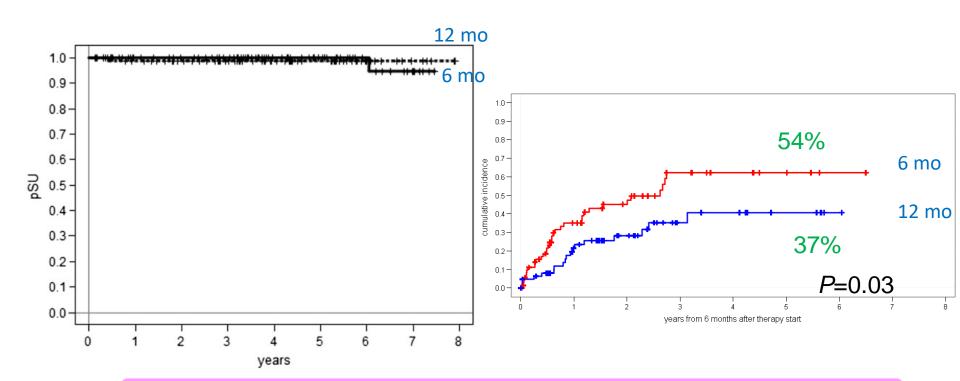
MS-LCH History of LCH treatment

LCH-III (2001-2008)

- Upfront 2 drugs no VP-16
- Age of Dx < 2y was removed from RF</p>
- Treatment intensity tailored by RO+/-

LCH III for MS LCH


- Group 2: Low-risk patients
 - Survival ~100%
 - The Problem: Reactivations
 - The Question: Does prolongation of therapy decrease reactivation rates?
 - Treatment:
 - PRD+VBL
 - Randomization: continuation <u>6 vs 12</u> months

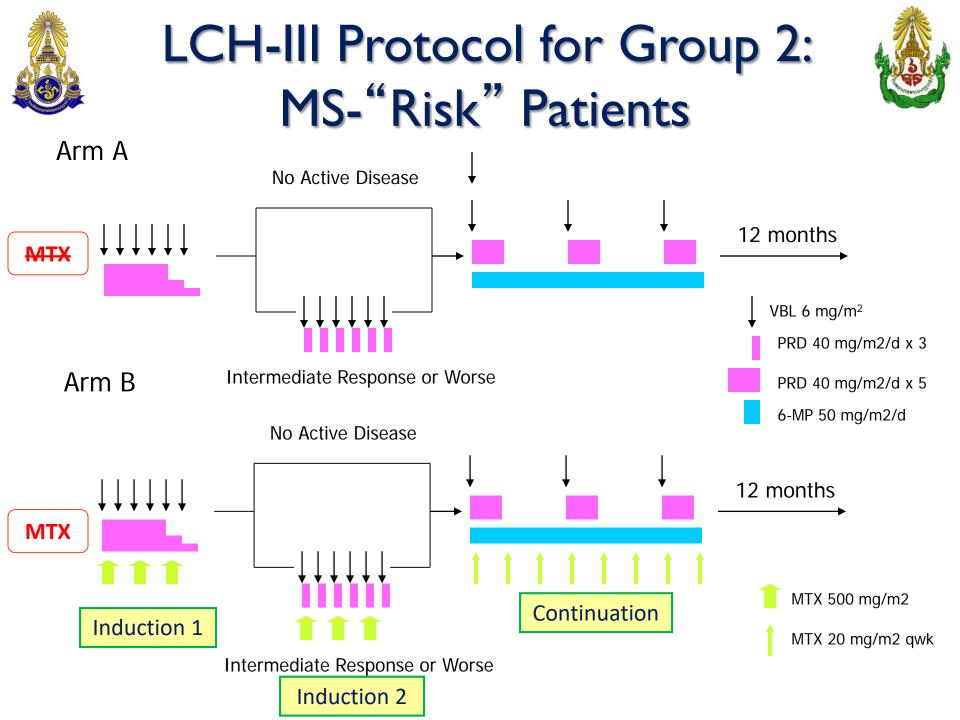

LCH-III Protocol for Group 2: MS-Low Risk Patients

Benefit in decreased disease reactivation in prolongation of therapy

Pediatric Cancer & Hematologic Disorder PedHemOnc-PMK

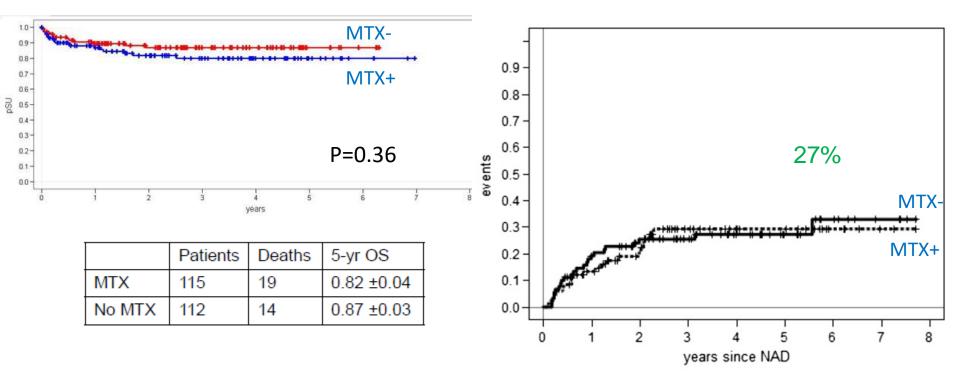
Survival

Gadner et al., Blood 2013; 121: 5006-14



Group 1: "Risk" patients

- The Problem: Survival
- The Question: Does the addition of MTX improve survival?
- Treatment:
 - Randomization PRD+VBL+6-MP <u>+/- MTX</u>
 - Duration: 12 months

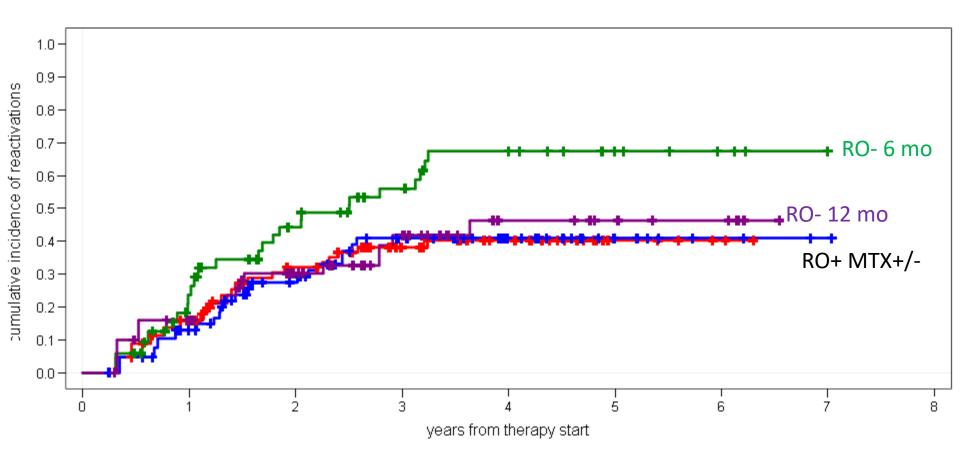


Addition MTX in RO+MS LCH

Survival

Reactivations

No advantage with added MTX



Gadner et al., Blood 2013; 121: 5006-14

Therapy prolongation improves outcome in MS LCH

The probability of reactivation in the "Risk Group" (both treatment arms total 12 months) was similar to the 12-month treatment arm of the "Low risk" trial

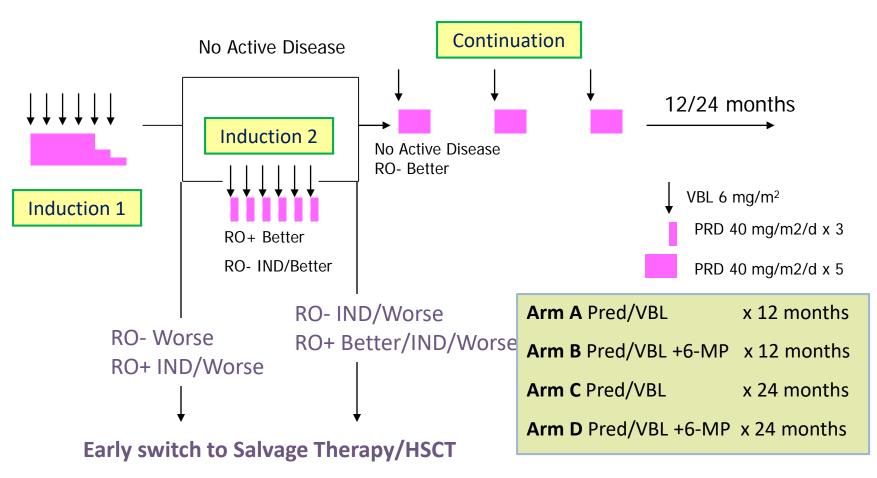
Outcomes among different LCH protocols

	Multifocal SS-LCH			MS-LCH						
									LCH-III	
Variable	DAL-HX	JLSG-96	JLSG-02	DAL-HX	JLSG-96	JLSG-02	LCH-I	LCH-II	RO –	RO +
Ν	34	32	67	63	59	97	143	193	269	285
Duration (mo)	12	7.5	12	12	7.5	12	6	6	6/12	12
Response rate (%)	94.1	96.9	85.1	79	76.3	84.5	53	67	86	70–72
Reactivation rate (%)	17.6	28.1	22	30	45.3	25	58	46	54/37	25–29
Survival rate (%)	_	100	100	94	94.4	97.6	79	76.5	99	84
Incidence of DI (%)	2.9	3.2	1.5	11.9	8.9	18.6	22.5	21.8	12	8–9

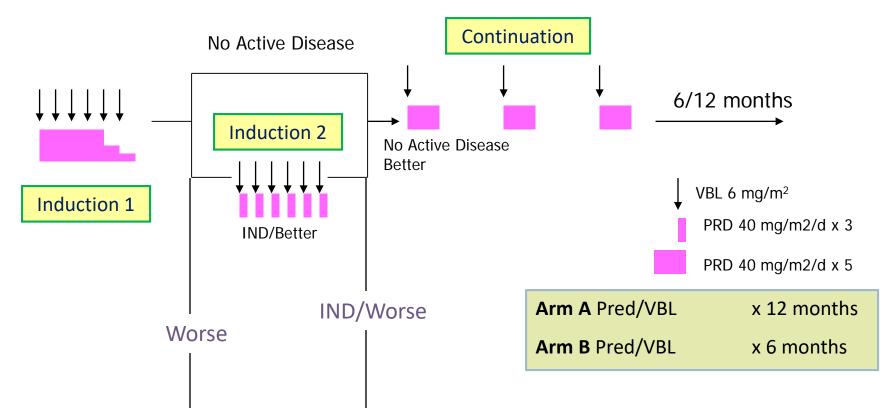
Monsereenusorn et al., Hematol Oncol Clin North Am 2015; 29: 853-73

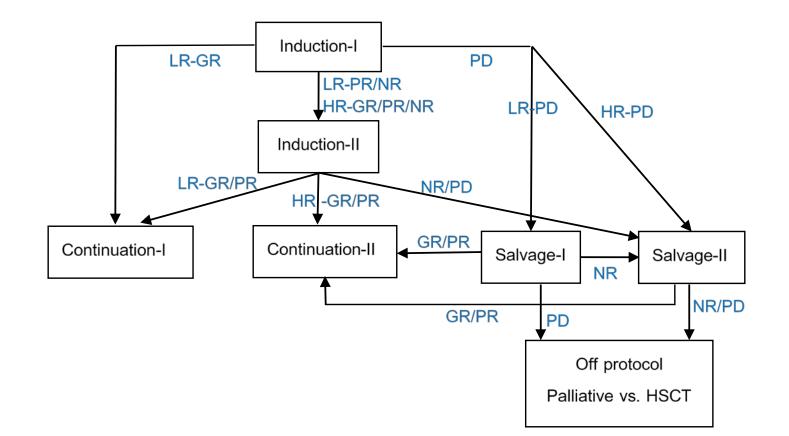
Opened: 2011

Clinical	Involved	Involved Organs
Classification	System	
Multisystem LCH	≥ 2	RO+/-
(MS-LCH)		(e.g. hemato, liver, and/or spleen)
(Group 1)		
Single System	1	 Bone UF (single bone) or MF (>1 bone)
LCH	(UF/MF)	• Skin
(SS-LCH)		• LN (excluding draining LN of another LCH lesion)
(Group 2)		• Lungs
		 Special site (eg. Vertebrae, spine)
		• "CNS-risk"
		Central nervous system (CNS)
		• Other (e.g. thyroid, thymus)


Pediatric Cancer & Hematologic Disorder PedHemOnc-PMK

- STRATUM I: 1st line therapy for MS-LCH (Group 1) and SS-LCH (isolated "CNS-risk" or multifocal bone lesions) (Group 2)
- STRATUM II: 2nd line treatment for <u>non risk</u> LCH
- STRATUM III: Salvage treatment for <u>risk</u> LCH
- STRATUM IV: HSCT for <u>risk</u> LCH
- STRATUM V: Monitoring and Treatment of <u>CNS-LCH</u>
- STRATUM VI: Natural history and management of <u>"other"</u> <u>SS-LCH</u> not eligible for stratum I group 2
- **STRATUM VII**: Long-term follow-up

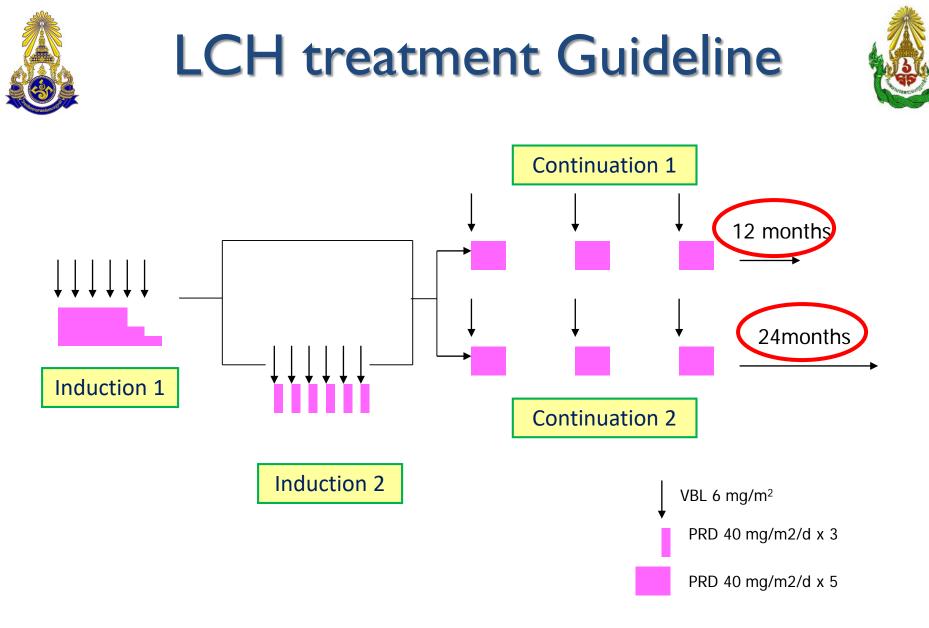



Early switch to Salvage Therapy

LCH treatment Guideline

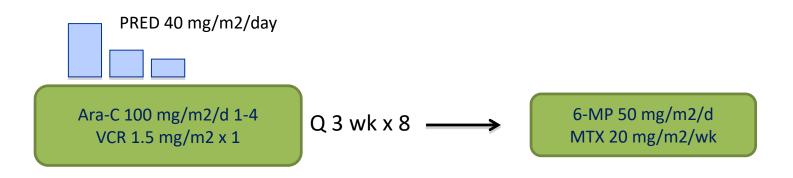
Thai Pediatric Oncology Group

GR; good response, PR; partial response, NR; not response, PD; progressive disease

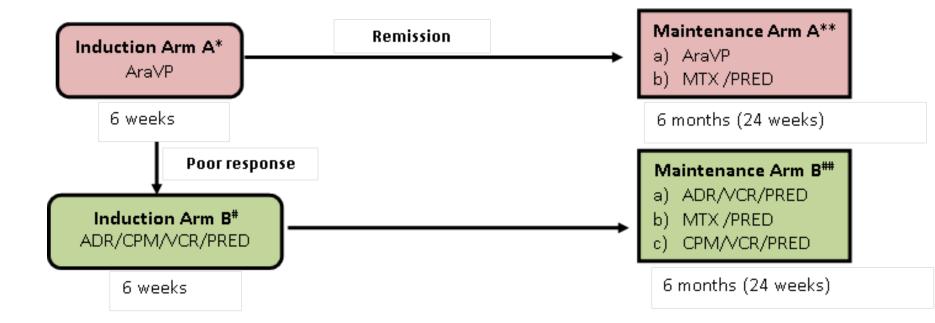


Indication for Treatment

- Low risk LCH (LR)
 - SS-LCH with
 - CSN-risk lesions
 - Multifocal bone lesions
 - "Special Site" lesions
 - MS-LCH without "risk organs"
- High risk LCH (HR)
 - MS-LCH with "risk organs"



LCH treatment Guideline Salvage I regimen For LR with progressive disease


18 months

LCH treatment Guideline Salvage II regimen For HR with progressive disease*

*or NR/PD for Induction-II or NR for Salvage-I protocol

JLSG-96 protocol for LCH patients Morimoto et al., Cancer 2006; 107: 613-9

Recurrent LCH

20-50% of patients

Low risk: SS-MFB, MS RO-

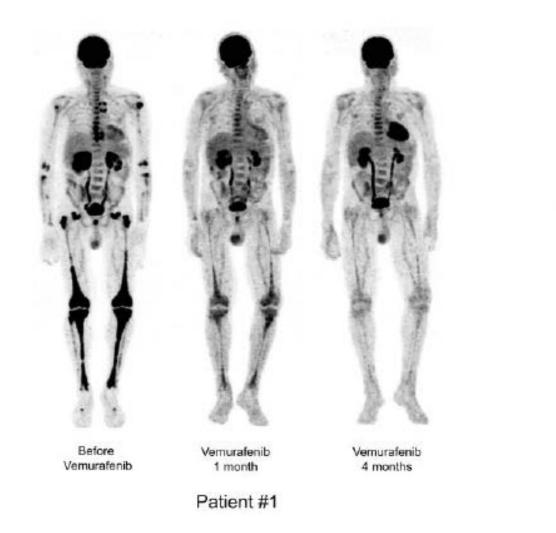
- Disease reactivation 1/3 of patients
- Response well to 2nd line therapy
- 6-MP and MTX, indomethacin, bisphosphanate, BRAF inhibitor, cladribine

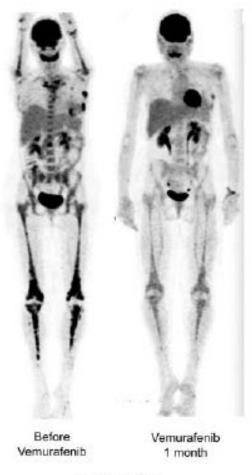
High risk: RO+

Poor response to standard therapy

MS-LCH without risk organ involvement		MS-LCH with risk organ involvement			
1.	Cladribine	1.	Cytarabine with cladribine		
2.	6-MP with methotrexate	2.	Clofarabine		
3.	Bisphosphonate (local skin and	3.	BRAF inhibitor		
	bone)	4.	Hematopoietic stem cell		
4.	Clofarabine		transplantation (HSCT)		
5.	Imatinib mesylate				

Monsereenusorn et al., Hematol Oncol Clin North Am 2015; 29: 853-73 Monsereenusorn et al., Expert Opinion on Orphan Drugs. 2016; 4(10): 1057-68.




Targeted therapy for LCH with BRAF mutation

HAROCHE et al

BLOOD, 28 FEBRUARY 2013 · VOLUME 121, NUMBER 9

Patient #2

The Prevalence, Clinical Characteristics, Management and Outcomes of Children with Langerhans Cell Histiocytosis in Thailand

chalinee_monsereenusorn@pedpmk.org

- ► LCH is a neoplastic proliferation of Langerin + myeloid dendritic cells → recruitment of activated lymphocytes
- Wide spectrum of clinical presentations that combine features of neoplastic proliferation with inflammation
- Challenges:
 - Patients with MFB have excellent prognosis but high tendency for disease reactivation (30-50%)
 - ► Treatment of patients with RO+ disease → Intensive upfront therapy
 - ▶ Reactivations \rightarrow prolongation of therapy
 - Relapse in RO+

children with cancer

for

www.pedhemeoncpmk.com