

How I Treat Difficult Langerhans Cell Histiocytosis

Intensive Review in Pediatric Hematology/Oncology" 28-29 November, 2020

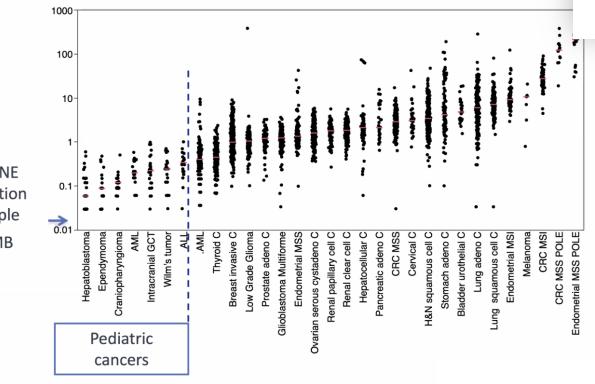
Chalinee Monsereenusorn, MD

Assistant Professor Division of Hematology-Oncology, Department of Pediatrics, Phramongkutklao Hospital and College of Medicine

- Biology
- Classification of histiocytosis
- Clinical presentations
- Investigations
- Classification of LCH
- Difficult LCH
 - RO+MS-LCH
 - Liver compromised LCH
 - Refractory or relapse MFB
 - Refractory RO+ MS-LCH
 - Role of stem cell transplantation in LCH
 - Pulmonary LCH

Adult LCH

Pediatric Cancer & Hematologic Disorder PedHemOnc-PMK


- Inflammatory response vs. Oncogenic event ???
- Originate from a myeloid-derived precursor to a dendritic lineage and Langerin
 - Langerin (CD 207) is NOT limited to epidermal LC
 - LCH CD 207+ cells express several genes associated with immature myeloid dendritic cells
 - LCH lesions do not arise from epidermal LCs but from accumulation of BM-derived immature myeloid dendritic cells
- Uncontrolled clonal periforation of CD1a+/CD207+ cells

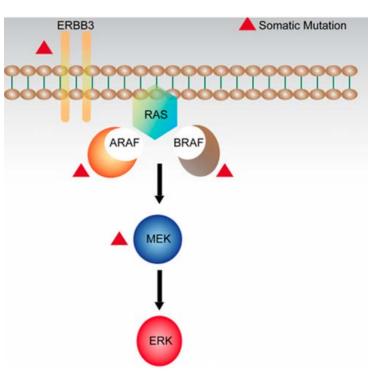
Badalian-Very et al., Annu Rev Pathol 2013; 8: 1-20 Badalian-Very et al., Blood 2010; 116: 1919-23 Chakraborty et al., Blood 2014; 124: 3007-15 Allen et al. Journal Immunol 2010

Very Low Mutation Frequency in LCH

Median of ONE somatic mutation per LCH sample 0.03 muts/MB

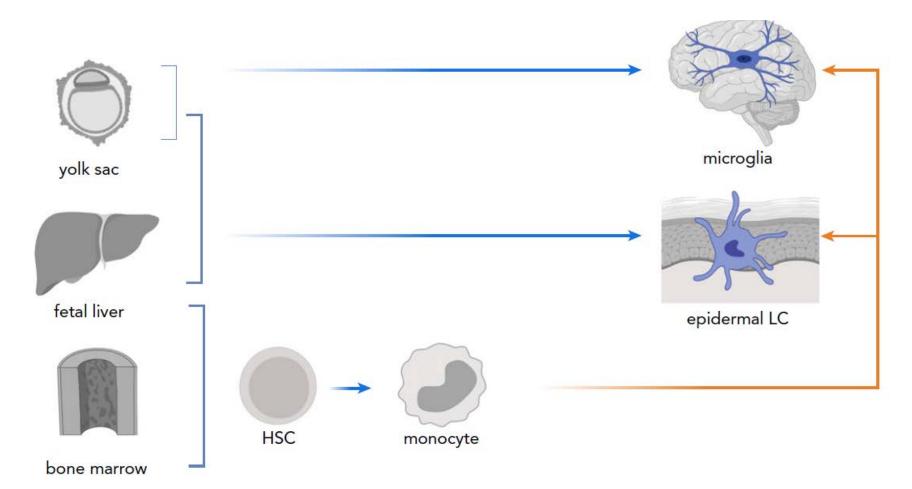
Pediatric Cancer & Hematologic Disorder PedHemOnc-PMK

Chakraborty et al., Blood 2014; 124: 3007-15 Courtesy of Carlos Rodriguez-galindo, M.D. (with permission)

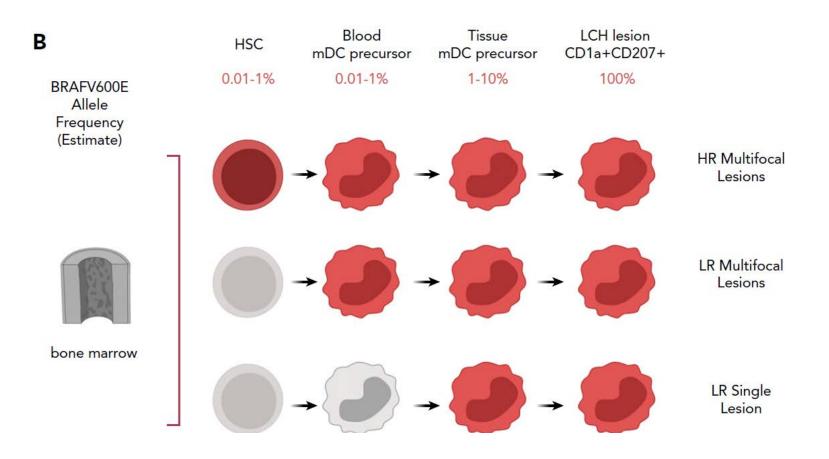


Activation of the MAPK/ERK signaling pathway

- 60-70% somatic mutation in BRAF (BRAF^{V600E})
- 10-25% Others
 - Mutation in MAP2K1
 - Mutation in ARAF
- ¾ Unknown



Badalian-Very et al., Annu Rev Pathol 2013; 8: 1-20 Badalian-Very et al., Blood 2010; 116: 1919-23 Chakraborty et al., Blood 2014; 124: 3007-15



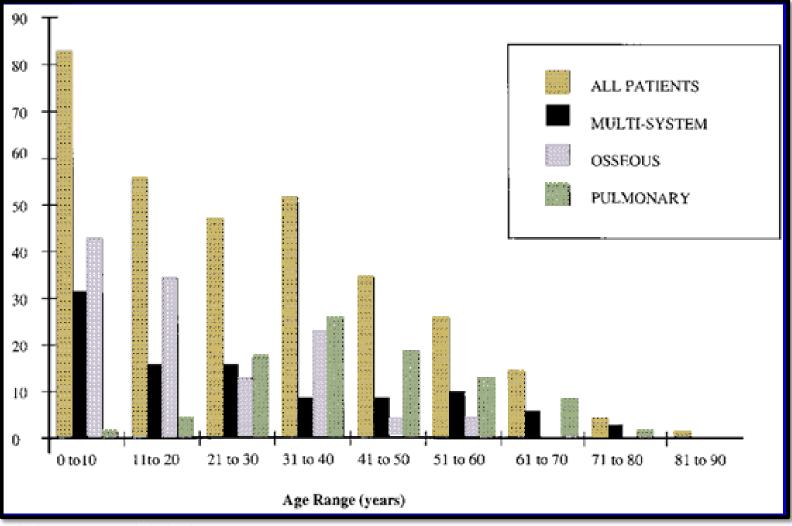
Rodriguez-Galindo C, Allen CE. Langerhans cell histiocytosis. Blood. 2020;135(16):1319-1331

Rodriguez-Galindo C, Allen CE. Langerhans cell histiocytosis. Blood. 2020;135(16):1319-1331

Classification of histiocytosis (LCRMH)

Group	Disease
L Group LCH	 LCH Indeterminate-cell histiocytosis (ICH)
	 Erdheim-Chester Disease (ECD)
	Mixed LCH/ECD
C Group	Cutaneous non-LCH
Cutaneous non-LCH	 Xanthomatous granuloma (XG) family: JXG
	 Non-XG family: cutaneous RDD, NXG, other
	Cutaneous non-LCH with a major systemic component
	• XG family: XD
	 Non-XG family: MRH
R Group	Familial RDD
RDD	Sporadic RDD
M Group	 Primary Malignant Histiocytoses
Malignant histiocytoses	Secondary Malignant Histiocytoses
H Group	Primary HLH
Pediatric Cancer & Hematologic Disorder	 Secondary HLH (non-Mendelian HLH)
PedHemOnc-PMK	 HLH of unknown/uncertain origin

Emile JF, Abla O, Fraitag S, et al. Blood. 2016;127(22):2672-2681.



- Clonal proliferation of "Langerhans Cells"
- Multiple organs and systems can be involved
- Clinical presentation and outcome very variable

Eosinophilic Granuloma Skin Disease Poliostotic Bone Disease Hand-Schuler-Christian Multi-systemic Disease Letterer-Siwe

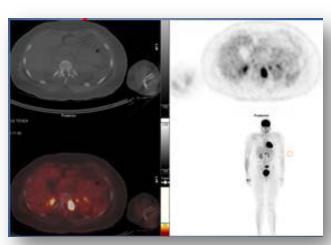
Pediatric Cancer & Hematologic Disorder PedHemOnc-PMK

Howarth et al., Cancer 1999; 85: 2278-90

Organ system involvement in LCH

Brain	Neuroendocrine deficits Neurodegeneration						
Skull and craniofacial bones							
Chest	Lung dise Thymus	ease (infants, smokers)					
Abdomen	Liver Spleen Gl tract						
Skeleton	Bones						
Skin	Cradle ca	p, seborrhea					
Hematopoietic sy	/stem	pancytopenia, hypersplenism					
Lymph nodes							

Site	% of cases involved
Bone	80
Skin	60
Liver, spleen, LN	33
Bone marrow	30
Lungs	25
Orbit	25
Orodental	20
Otological	20
DI	15
GI tract	<5

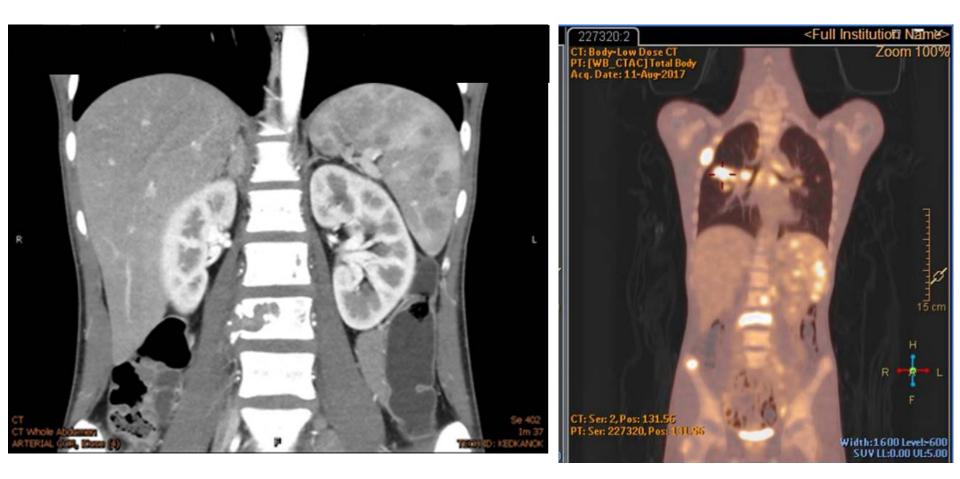


Investigations

- Plain film skull
- Plain x-ray of primary lesion
- Bone survey
- CT/MRI primary lesion
- Abdominal ultrasound
- MRI pituitary
- PET scan : almost always positive in LCH*
- CBC, blood chem

*Agarwal et al., Jpn J Radiol; 2016, 34:267-76





Pediatric Cancer & Hematologic Disorder PedHemOnc-PMK

FDG PET-CT in LCH

At diagnosis

At follow-up

		Per-patient prese of LCH lesions	ence		Per-scan presence of recurrent or progressive disease		
		Positive	Negative	Total	Positive	Negative	Total
Per-patient FDG PET-CT findings	Positive	20ª	1 ^b	21	6	2 ^a	8
	Negative	0	5 ^c	5	0	75	75
	Total	20	6	26	6	77	83
		Sensitivity = 100% (20/20)	Specificity = 83% (5/6)		Sensitivity = 100% (6/6)	Specificity = 97% (75/77)	

Clinical Classification of LCH patients

Clinical	Involved Organs
Classification	
Multisystem LCH	≥ 2 systems
RO+/-	+/- Bone marrow, liver, and/or spleen
Single System LCH	1 system
• Single site	 Skin, bone, lymph node, other (thyroid, thymus)
(unifocal)	Multifocal bone
Multiple sites	 Skull-base lesion with intracranial extension or
(multifocal)	vertebral lesion with intraspinal soft tissue extension
Special site	
Pulmonary LCH	Isolated lung disease
CNS LCH	Tumorous lesion
	 Neurodegenerative LCH

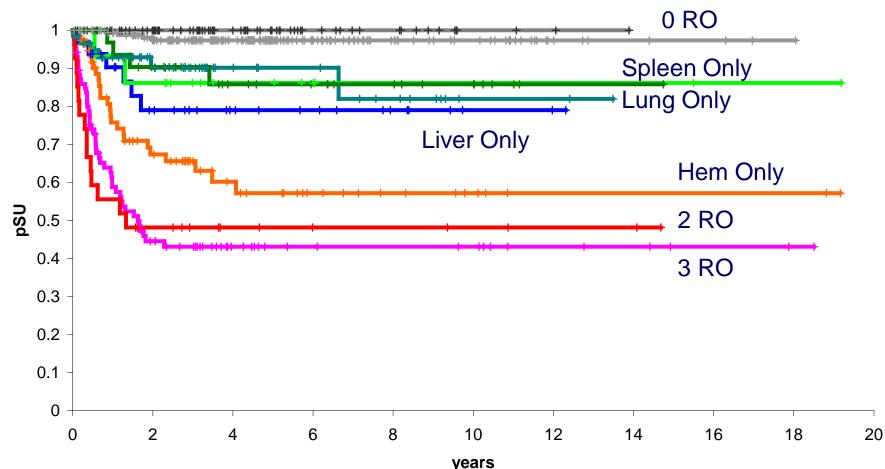
- Rapid response to initial treatment within 6 weeks
- Involvement of "Risk organs"; hematopoietic system, liver, spleen and lungs
- Age at diagnosis: diagnosed before 2 years of age, mortality rate 66% (but not include in "Risk")
- Number of organ involvement : mortality rate is increasing follow by numbers of organ involvement
- Bone involvement associated with favorable prognosis
- Organ dysfunction presented at diagnosis or during the course of disease
- Patients with MFB have excellent prognosis but high tendency for disease reactivation (30-50%) and permanent consequences

Gadner et al., J Pediatr 2001; 138: 728-34 Gadner et al., Blood 2008; 111: 2556-62 Gadner et al., Klin Padiatr 1987; 199: 173-82 Gadner et al., Blood 2013; 121: 5006-14

Risk organs involvement definition

Hematopoietic involvement: (+/- BM involvement~CD1a +)

- At least 2 of the following:
- 1. Anemia:
 - Hemoglobin <10 g/dl
 - Infants <9.0 g/dl
- 2. Leukocytopenia: WBC <4,000/μL
- 3. Thrombocytopenia: platelets <100,000/μL
- Spleen involvement: enlargement >2 cm BCM in the MCL by PE
- ► Liver involvement: ≥ 1 of the following
 - 1. Enlargement >3 cm BCM in the MCL by PE
 - Dysfunction i.e. hypoproteinemia <55 g/L, hypoalbuminemia <25 g/L, not due to other causes
 - 3. Histopathological findings of active disease



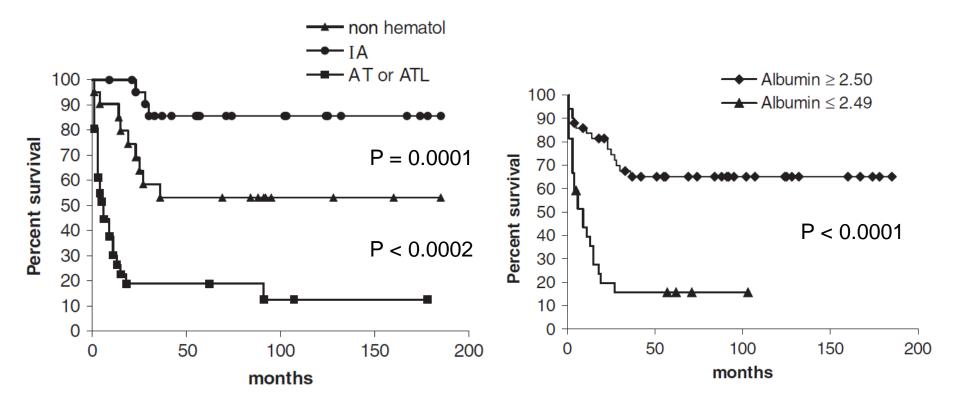
Pediatric Cancer & Hematologic Disorder

PedHemOnc-PMK

Outcome by Risk Organ Involvement

Data from LCH Studies Provided by Vienna Data Center

PMK RO+ MS-LCH patients' characteristic


No	Age at diagnosis (months)	Abnormal LFT	Risk organs involvement	Other organ involvement	Chemotherapy regimens	Disease status	Status at last follow-up	Follow- up time	BRAF ^{V600E} mutation
1	20	TP 4.8 alb 2.4 TB 13.7 DB 12.9 AST 56 ALT 47 ALP 451	Liver, spleen, hematopoietic	Skin, bone	Ara-C, prednisolone	Progressive	DWD	12 months	Not done
2	3	TP 8 alb 4.8 TB 14 DB 0.5 AST 30 ALT 16 ALP 254	Liver, spleen, hematopoietic	Lung, bone	DAL-Hx83: VBL, VP-16, 6-MP, MTX, prednisolone	Remission	Alive, NED	16 years	Not done
3	14	-	Liver, spleen	Bone, lymph nodes	LCH-III (High risk): MTX, VBL, Prednisolone, 6-MP	Reactivation MFB	AWD	8 years 7 months	Not done
4	15 years 7 months	-	Liver, spleen	Lung, bone (special site)	TPOG 2018: (High risk): VBL, Prednisolone, 6-MP	Reactivation	AWD	32 months	Negative
5	16	TP 6.27 alb 2.73 TB 0.65 DB 0.28 AST 29.8 ALT 19.2 ALP 80	Liver, spleen, hematopoietic	Skin, bone	TPOG 2018: (High risk): VBL, Prednisolone, 6-MP	Progressive	DWD	7 months	Positive

Pediatric Cancer & Hematologic Disorder PedHemOnc-PMK

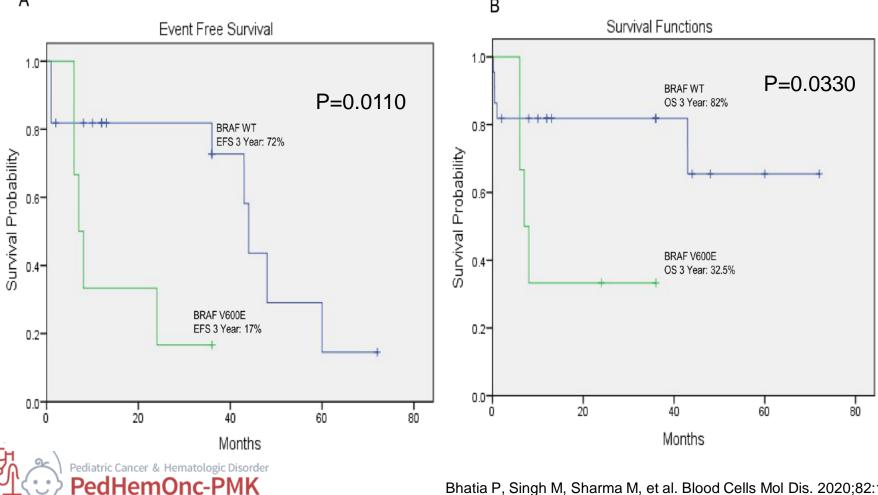
Mosereenusorn et.al. under review

Hematologic involvement and hypoalbuminemia related with MS-LCH outcome

Braier JL, Rosso D, Latella A, et al. J Pediatr Hematol Oncol. 2010;32(4):e122-e125.

BRAF^{V600E} Clinical Correlation

- ▶ 63% of patients with *BRAF*^{V600E}
- No significant correlation:
 - High risk vs. Low risk
 - Age (<2 vs. 2-8 vs. >8 years)
 - Gender
 - Single vs. multifocal
 - Overall survival

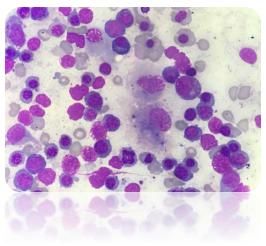


BRAF^{V600E} positive 6/31 (19%)

А

All cases of *BRAF*^{V600E} were MS-LCH (100% vs. 41%, p=0.0348)

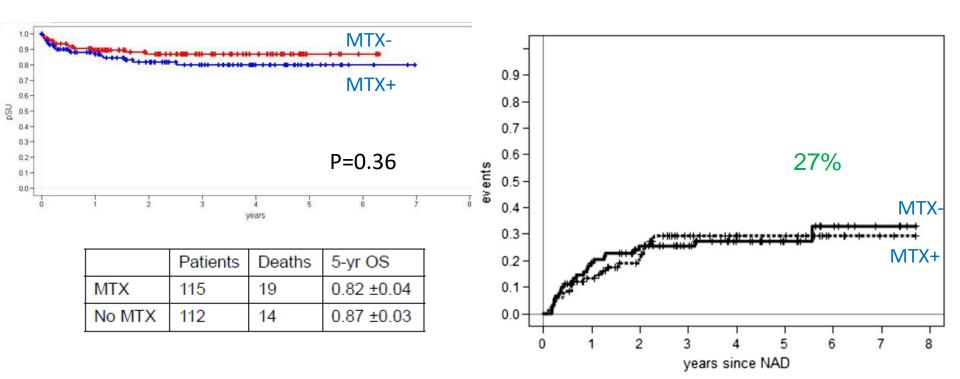
Bhatia P, Singh M, Sharma M, et al. Blood Cells Mol Dis. 2020;82:102356.


RO+ MS-LCH

Parental permission for educational propose only

LCH protocols

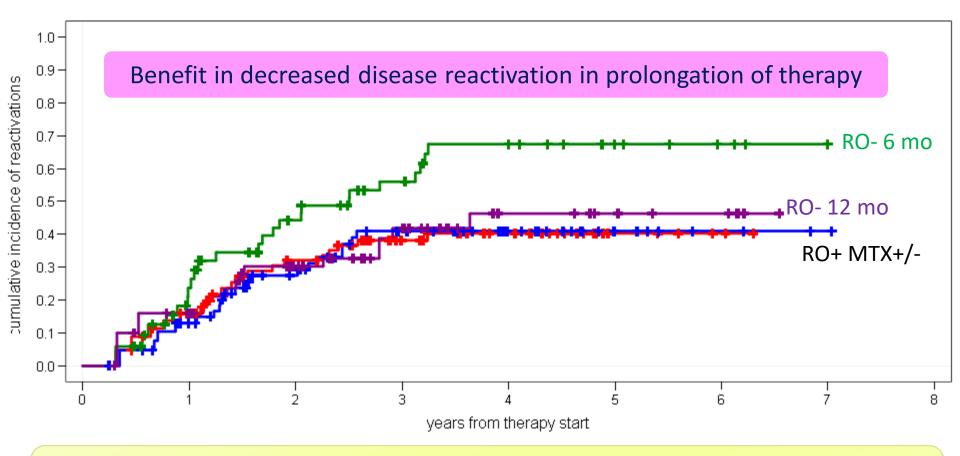
Protocol	Chemotherapy	Duration
DAL-HX-90	VBL, PRED, VP-16, 6-MP, MTX	12 mo
JLSG-96	Ara-C, VCR, PRED, Dox, CTX, MTX	12 mo
LCH-I	VBL, methylpred, VP-16	6 mo
LCH-II	VBL, PRED, VP-16, 6-MP	6 mo
LCH-III	VBL, PRED, 6-MP, MTX	6/12 mo



Survival

Reactivations

No advantage with added MTX



Gadner et al., Blood 2013; 121: 5006-14

Therapy prolongation improves outcome in MS LCH

The probability of reactivation in the "Risk Group" (both treatment arms total 12 months) was similar to the 12-month treatment arm of the "Low risk" trial

Outcomes among different LCH protocols

Multifocal SS-LCH			MS-LCH							
									LCI	1-111
Variable	DAL-HX	JLSG-96	JLSG-02	DAL-HX	JLSG-96	JLSG-02	LCH-I	LCH-II	RO –	RO +
Ν	34	32	67	63	59	97	143	193	269	285
Duration (mo)	12	7.5	12	12	7.5	12	6	6	6/12	12
Response rate (%)	94.1	96.9	85.1	79	76.3	84.5	53	67	86	70–72
Reactivation rate (%)	17.6	28.1	22	30	45.3	25	58	46	54/37	25–29
Survival rate (%)	_	100	100	94	94.4	97.6	79	76.5	99	84
Incidence of DI (%)	2.9	3.2	1.5	11.9	8.9	18.6	22.5	21.8	12	8–9

LCH IV Study Aims

1.

LCH-IV

International Collaborative Treatment Protocol for Children and Adolescents with LANGERHANS CELL HISTIOCYTOSIS

EudraCT Nr.: 2011-001699-20 International Sponsor: St. Anna Kinderkrebsforschung (Children's Cancer Research Institute) Vienna, Austria

amended protocol version 1.6, March 1st, 2020

Protocol Code Number: 042011

Decrease the <u>frequency of</u> <u>reactivations</u> and improve survival by

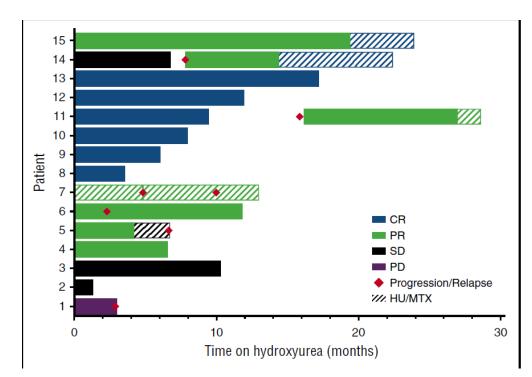
- Prolongation of therapy
- Additional 6-MP
- 2. Investigate <u>salvage regimen</u> <u>for low risk disease</u>
- 3. Decrease <u>mortality</u> by
 - Early switch to salvage regimen
 - Identification of patient at risk
- 4. Investigate <u>LCH CNS disease</u>

- STRATUM I: 1st line therapy for MS-LCH (Group 1) and SS-LCH (isolated "CNS-risk" or multifocal bone lesions) (Group 2)
- STRATUM II: 2nd line treatment for <u>non risk</u> LCH
- STRATUM III: Salvage treatment for <u>risk</u> LCH
- STRATUM IV: HSCT for <u>risk</u> LCH
- STRATUM V: Monitoring and Treatment of <u>CNS-LCH</u>
- STRATUM VI: Natural history and management of <u>"other"</u> <u>SS-LCH</u> not eligible for stratum I group 2
- STRATUM VII: Long-term follow-up

- Contraindication for vinblastine and vincristine
- Prednisolone will be the KEY for induction
- Cytarabine substitution may be considered.
- Escalation dose of cytarabine monthly will be recommended, rely on hematological toxicity.

Recurrent LCH

- 20-50% of patients
- Low risk: SS-MFB, MS RO-
 - Disease reactivation 1/3 of patients
 - Response well to 2nd line therapy
 - 6-MP and MTX, indomethacin, bisphosphanate, BRAF inhibitor, cladribine
- High risk: RO+
 - Poor response to standard therapy


MS	S-LCH <u>without</u> risk organ involvement	M	S-LCH <u>with</u> risk organ involvement
1.	Cladribine	1.	Cytarabine with cladribine
2.	6-MP with methotrexate	2.	Clofarabine
3.	Prednisolone with methotrexate	3.	BRAF inhibitor
4.	Bisphosphonate (local skin and	4.	Hematopoietic stem cell
	bone)		transplantation (HSCT)
5.	Clofarabine		
6.	Imatinib mesylate		

Hydroxyurea: a new old therapy for Langerhans cell histiocytosis

Daniel J. Zinn,* Amanda B. Grimes,* Howard Lin, Olive Eckstein, Carl E. Allen, and Kenneth L. McClain

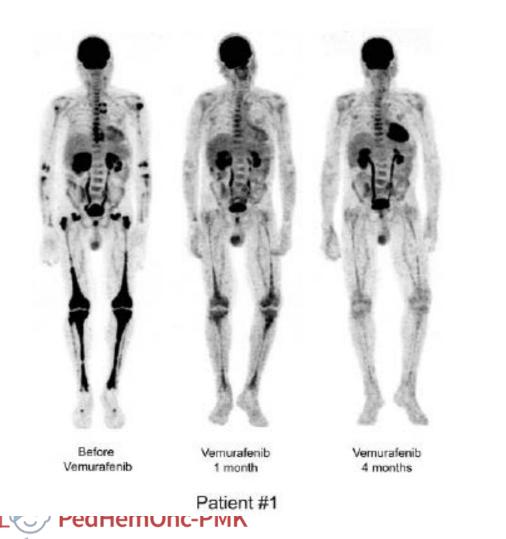
Texas Children's Cancer and Hematology Centers, Baylor College of Medicine, Houston, TX

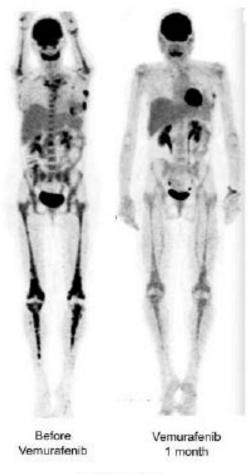
Hydroxyurea 20 mg/kg/day N=15 relapse LCH 8/15 (53%) CR 4/15 (27%) PR 3/15 (20%) SD

- Osteoclast inhibitors
 - Improve bone structure
 - Decrease inflammatory substance

Dose

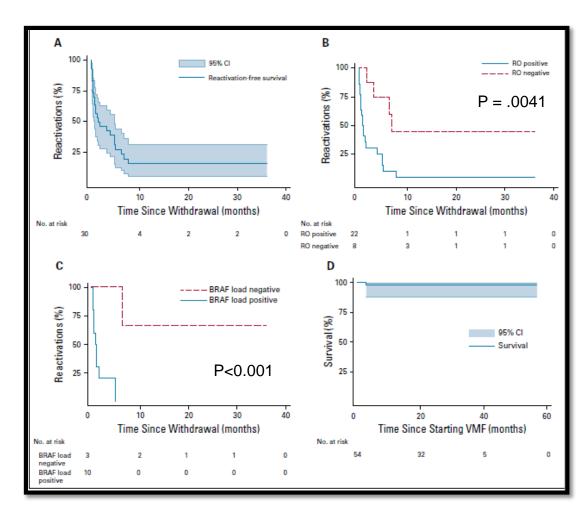
- Pamidronate 90 mg IV x 3 days q 3 mo
- Pamidronate 90 mg IV q mo
- Etidronate 200 mg/m2/day x 14 days oral q 3 mo




Targeted therapy for LCH with BRAF mutation

HAROCHE et al

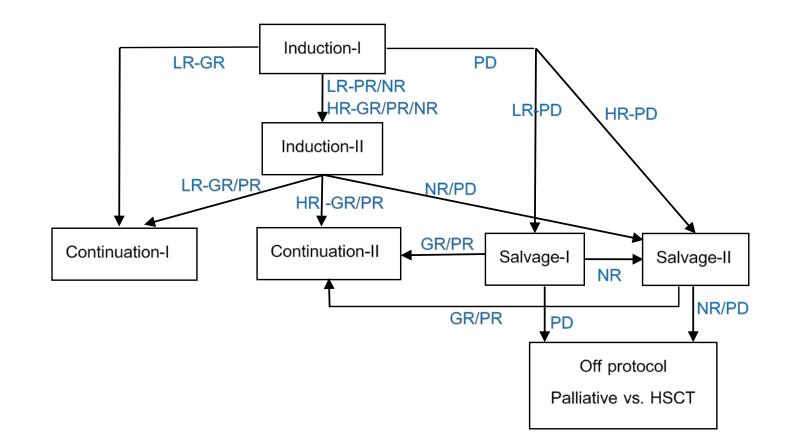
BLOOD, 28 FEBRUARY 2013 · VOLUME 121, NUMBER 9



Patient #2

- N=54 from 12 countries
- VMF 20 mg/kg/day

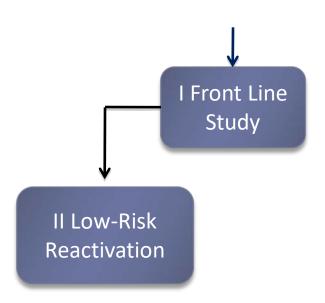
Donadieu J, Larabi IA, Tardieu M, et al. J Clin Oncol. 2019;37(31):2857-2865


HSCT in refractory pediatric LCH

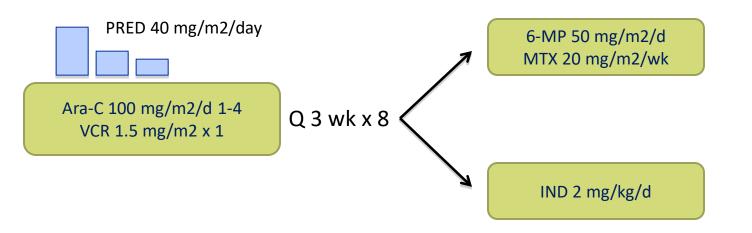
- ► N=30
- 11 MAC, 19 RIC
- > 23/26 RO+ MS-LCH
- Disease status at HSCT:
 - 4 no AD
 - > 2 AD-regression, 4 AD-stable, 16 AD-progressive
- 5-year OS 59.6%, FFS 56.3%
- 5-year OS of no AD/AD-regression 100% vs. 54.5% of AD-stable and progressive (p = 0.040)
- Disease state at the time of HSCT was the most

important prognostic factor. Pediatric Cancer & Hematologic Disorder PedHemOnc-PMK

Thai Pediatric Oncology Group

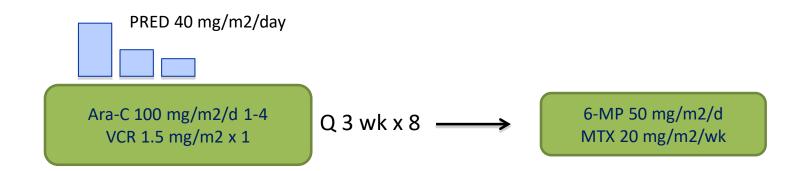


GR; good response, PR; partial response, NR; not response, PD; progressive disease

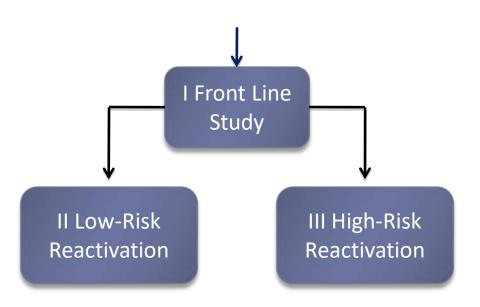


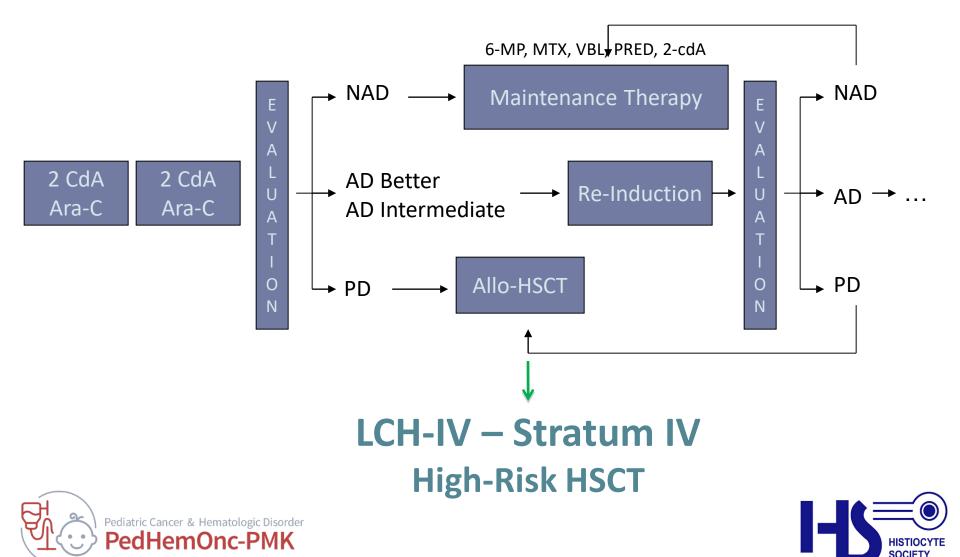
6 months

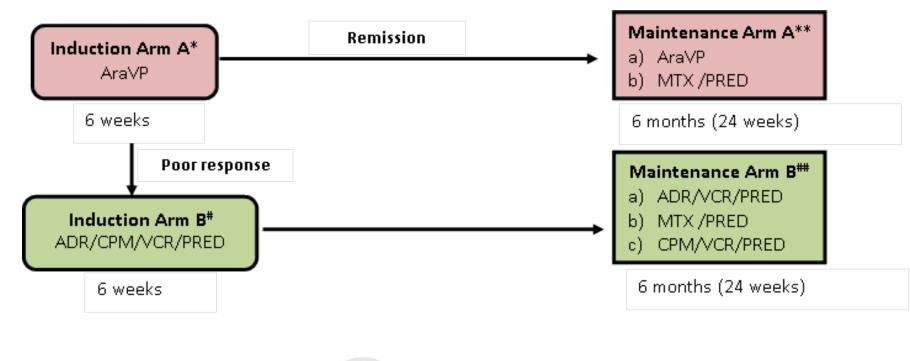
18 months



LCH treatment Guideline Salvage I regimen For LR with progressive disease

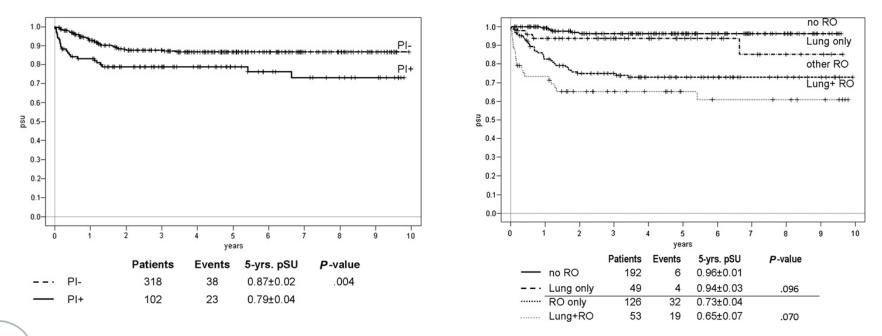



LCH-IV Study



LCH treatment Guideline Salvage II regimen For HR with progressive disease*

Pediatric Cancer & Hematologic Disorder PedHemOnc-PMK


Thai Pediatric Oncology Group

*or NR/PD for Induction-II or NR for Salvage-I protocol

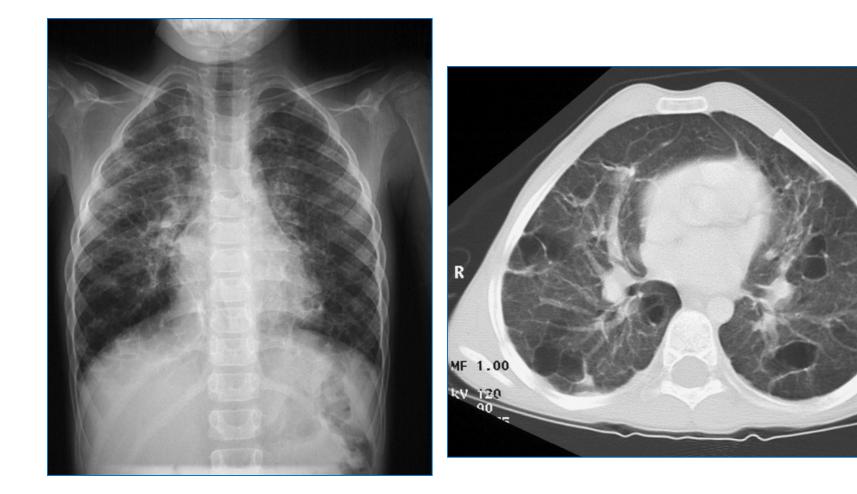
JLSG-96 protocol for LCH patients Morimoto et al., Cancer 2006; 107: 613-9

- In multivariate analysis, pulmonary involvement was not an independent prognostic factor
- Therefore, it was excluded from the definition of risk organ involvement in MS-LCH.

Pediatric Cancer & Hematologic Disorder PedHemOnc-PMK

Pulmonary LCH Pediatric vs. adult

	Pediatric	Adult
Sites	Mostly as part of MS-LCH	Mostly isolated lung
Smoking	No association	90-95% association
Pneumothorax at 1 st presentation	Not common	Common (32%)
Radiological findings	Cystic lesion Reticulonodular pattern	
	CPA and lower lungs	Spare CPA and lower lungs


Barclay M, Devaney R, Bhatt JM. Breathe. 2020 Jun 1;16(2).

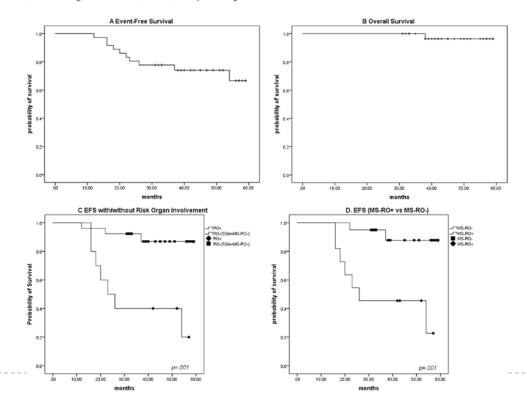
Lung involvement in LCH

H-SP-CR

Han et al. BMC Cancer (2020) 20:433 https://doi.org/10.1186/s12885-020-06872-8

Pediatric Cancer & Hematologic Disorder

PedHemOnc-PMK


RESEARCH ARTICLE

The combination of methotrexate and cytosine arabinoside in newly diagnosed adult Langerhans cell histiocytosis: a prospective phase II interventional clinical trial

Xiao Han[†], Mingqi Ouyang[†], Minghui Duan^{*}, Wei Zhang, Tienan Zhu, Jian Li, Shujie Wang and Daobin Zhou

- ► LCH is a neoplastic proliferation of Langerin + myeloid dendritic cells → recruitment of activated lymphocytes
- FDG PET-CT scan had greater accuracy to detect LCH disease
- Liver and hematopoietic involvement are worse prognosis factors in MS-LCH
- Patients with MFB have excellent prognosis but high tendency for disease reactivation (30-50%)
- Reactivations \rightarrow prolongation of therapy
- BRAF inhibitor and HSCT are the future direction to improve outcome in refractory LCH

children with cancer

for

www.pedhemeoncpmk.com